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?1. Why network size is so important

One of the most important problems that neural network designers face today is choosing an

l

n

appropriate network size for a given application. Network size involves in the case of layered neura

etwork architectures, the number of layers in a network, the number of nodes per layer, and the

e

f

number of connections. Roughly speaking, a neural network implements a nonlinear mapping of th

rom u =G (x ). The mapping function G is established during a training phase where the network

s

(

learns to correctly associate input patterns x to output patterns u . Given a set of training example

x , u ), there is probably an infinite number of different size networks that can learn to map input pat-

p

terns x into output patterns u . The question is, which network size is more appropriate for a given

roblem ? Unfortunately, the answer to this question is not always obvious. Many researchers agree

g

that the quality of a solution found by a neural network depends strongly on the network size used. In

eneral, network size affects network complexity, and learning time, but most importantly, it affects the

-

s

generalization capabilities of the network; that is, its ability to produce accurate results on patterns out

ide its training set.

There is a very illustrative analogy between neural network learning and curve fitting which

e

o

highlights the importance of network size. There are two problems in curve fitting: finding out th

rder of the polynomial and finding out the coefficients of the polynomial. Thus, given a set of data

s

o

points, first we decide on the order of the polynomial we will use and then we compute the coefficient

f the polynomial in order to minimize the sum of the squared differences between required and

-

m

predicted values. Once the coefficients have been computed, we can evaluate any value of the polyno

ial given a data point, even for data points that were not in the initial data set. If the order of the

t

polynomial chosen is very low, the approximations obtained are not good, even for points contained in

he initial data set. On the other hand, if the order of the polynomial chosen is very high, very bad

-

c

values may be computed for points not included in the initial data set. Figure 1 illustrates these con

epts. Similarly, a network having a structure simpler than necessary cannot give good approximations



e

- 2 -

ven for patterns included in its training set and a more complicated than necessary structure, "overfits"

p

the training data, that is, it performs nicely on patterns included in the training set but performs very

oorly on unknown patterns.

(somewhere here)

s
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Fig. 1. Good and Bad fit

�

?2. What does the theory say

Generally, the number of nodes in the input and output layers can be determined by the dimen-

r

sionality of the problem. However, determining the number of hidden nodes is not straightforward and

equires first the determination of the number of hidden layers. There is a number of theoretical results

w

concerning the number of hidden layers in a network. Specifically, Nielsen has shown that a network

ith two hidden layers can approximate any arbitrary nonlinear function and generate any complex

s

e

decision region for classification problems. Later it was shown by Cybenko that a single layer i

nough to form an arbitrarily close approximation to any nonlinear decision boundary. (Furthermore, it

a

was shown that one hidden layer is enough to approximate any continuous function with arbitrary

ccuracy where the accuracy is determined by the number of nodes in the hidden layer; also, one hid-

u

den layer is enough to represent any Boolean function). Recently, Hornik and Stinchombe have come

p with a more general theoretical result. In specific, they have shown that a single hidden layer feed-

w

forward network with arbitrary sigmoid hidden layer activation functions can approximate arbitrarily

ell an arbitrary mapping from one finite dimensional space to another. This tells us that feed-forward

d

s

networks can approximate virtually any function of interest to any desired degree of accuracy, provide

ufficiently many hidden units are available. Although the above theoretical results are of great impor-

t

g

tance because they demonstrate the powerful capabilities of feed-forward neural networks, they don’

ive us an indication of how to choose the number of hidden units needed per hidden layer. In addi-

o

tion, even if for some problems one hidden layer may be enough theoretically, in practice more than

ne hidden layers should be utilized to solve the problem faster and more efficiently. For example, we

c

mentioned before that one hidden layer is enough to approximate any continuous function. However, in

ertain problems, a large number of hidden nodes may be required in order to achieve the desired

o

s

accuracy. Thus, a network with two hidden layers and much fewer nodes overall, should be able t

olve the same problem more efficiently. Hence, choosing an appropriate network size for a given

problem is still something of an art.
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?3. Why small and simple networks are better

In determining the network size, one is only guided by his/her intuition and by some specific

-

s

knowledge about the problem. For example, when the input to the network is an image, it is more rea

onable to define local receptive fields (that is, to use local connections), instead of full connectivity

e

because nearby pixels in the image are probably more correlated than pixels located far away from

ach other. Unfortunately, when no a-priori knowledge about the problem is available, one has to

f

t

determine the network size by trial and error. Usually, one has to train different size networks and i

hey don’t yield an acceptable solution, then they are discarded. This procedure is repeated until an

n

t

appropriate network is found. Experience has shown that using the smallest network which can lear

he task, is better for both practical and theoretical reasons. Smaller networks require less memory to

.

T

store the connection weights and can be implemented in hardware easier and more economically

raining a smaller network usually requires less computations because each iteration is less computa-

r

o

tionally expensive. Smaller networks have also very short propagation delays from their inputs to thei

utputs. This is very important during the testing phase of the network, where fast responses are usu-

g

ally required. Bigger networks generally need larger number of training examples for achieving good

eneralization performance since it has been shown that the required number of training examples

a

grows almost linearly with the number of hidden units. However, in many practical cases we have only

limited number of training data and this may lead to a very poor generalization. Finally, although

y

e

bigger networks can perform more complicated mappings, when trained with limited training data the

xhibit poor generalization.

In order to illustrate the generalization capabilities of larger than the necessary networks, Reed

y

s

performed the following experiment: he trained two different size networks in order to classify linearl

eparable data in a two dimensional plane, with some overlap close to the boundary. Both of the net-

h

works he used were three layer networks (two hidden layers and one output layer). The big network

ad 2 inputs, 50 nodes in the first hidden layer, 10 nodes in the second layer and a single node in the

e

o

output layer. The small network had the same number of input-output nodes and 2 nodes in each on

f the hidden layers. Then, he plotted the decision boundary found by each one of the networks. The

e

b

results showed that although the classes were linearly separable, the decision boundary formed by th

ig network was highly nonlinear and it was very unlikely for this network to exhibit a good generali-

a

zation performance. On the other hand, the small network found a much better solution by forming an

lmost linear decision boundary.
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e4. Modifying the network architectur

It should be more clear at this point that solving a given problem using the minimum possible

t

w

network, poses a lot of advantages. However, choosing a smaller network over a larger one means tha

e actually restrict the number of free parameters in the network. Consequently, the error surface of a

e

o

smaller network is more complicated and includes more local minima compared with the error surfac

f a larger network. It is well known that the existence of local minima in the error surface can seri-

b

ously prevent a network from reaching a good solution. Thus, although smaller networks can prove to

e very beneficial in terms of generalization, their training may require a lot of effort. Recently, Judd

-

l

has proven that even if we were able to determine the optimal network size a-priori, the loading prob

em, that is, the problem of finding a set of weights for which that network performs the desired map-

e

ping, is NP-complete. Blum and Rivest proved later that the loading problem remains NP-complete

ven for nets containing only three nodes. Based on these theoretical results, Blum claimed that it is

-

n

unlikely that any algorithm which simply varies weights on a network of fixed size can learn in poly

omial time. During the last years, a number of techniques have emerged which attempt to improve the

e

a

generalization capabilities of a network by modifying not only the connection weights but also th

rchitecture as training proceeds. These techniques can be divided into two categories. The first

o

category includes methods that start with a big network and gradually eliminate the unnecessary nodes

r connections. These methods are called pruning methods. The second class includes methods that

a

start with a small network and gradually add nodes or connections when it is necessary. These methods

re called constructive methods. Figure 2, illustrates the classification of the methods.

F

(somewhere here)

ig. 2. Algorithms for optimal network architectures

� � ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��

s4.1 Pruning method

These methods attempt to find a quick solution to the problem by starting with a large network

e

fi

and then reducing it to a smaller network in order to improve generalization. Considering the curv

tting problem, the above approach implies that we start with a high order polynomial and gradually

n

s

eliminate the higher order terms which do not contribute significantly to the fit. There are two mai

ubcategories of pruning methods: (i) pruning based on modifying the error function and (ii) pruning

based on sensitivity measures.
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n4.1.1 Pruning by modifying the error functio

The basic idea of methods falling in this subcategory is to modify the error function of the net-

r

z

work in a way such that the unnecessary connections of the network will have zero weight (or nea

ero) after training. Then, these connections can be removed without degrading the performance of the

e

l

network. These approaches, which are also called weight decay approaches, actually encourage th

earning algorithm to find solutions which use as few weights as possible. The simplest modified error

f

s

function can be formed by adding to the original error function a term proportional to the sum o

quares of weights:

E = E + γ w 2
o

i j
ijΣΣ

w ohere E is the original error function (sum of the squared differences between actual and desired out-

,

a

put values), γ is a small positive constant which is used to control the contribution of the second term

nd w is the weight of the connection between node j of a layer and node i of the immediatelyij

ij n

o

higher indexed layer. The above error function penalizes the use of more w ’s than necessary. I

rder to show that, lets see how the weight updating rule is changed. Assuming that we apply the gra-

dient descent procedure to minimize the error, the modified weight update rule is given by:

∆w (t ) = −α(
∂w
∂E

� ������� )(t ) = −α(
∂w

∂E
� ������� )(t ) − 2γαw (t )o

ij
j

w

ij
ij i

here t denotes the t -th iteration and α denotes the learning rate. The above expression can be writ-

ten as:

w (t +1) = −α(
∂w

∂E
� ������� )(t ) + (1−2γα)w (t )o

ij
j

I

ij
i

t can be shown that the magnitude of the weights decreases exponentially towards zero by computing

the weight values after t weight adaptations:

w (t ) = α (1−2γα) (−
∂w

∂E
� ������� ) + (1−2γα) w (0)o t

ij
j

t
t −i

i1
ij

i =
Σ
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(assuming
�
1−2γα

�
< 1). The above approach has the disadvantage that all the weights of the network

l

w

decrease at the same rate. However, it is more desirable to allow large weights to persist while smal

eights tend toward zero. This can be achieved by modifying the error function in a way that small

t

weights are affected more significantly than large weights. This can be done for example by choosing

he following modified function:

E = E + γ
1 + w
�

w
�������������ij

2

2o
i j ij
ΣΣ

The weight updating rule then becomes:

w (t +1) = −α(
∂w

∂E
� ������� )(t ) + (1 −

(1 + w (t ))

2γα����������������������� )w (t )o

ij
2 2 ij

j

I

ij
i

t can be shown that in this case small weights decrease more rapidly than large ones.

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� s4.1.2 Sensitivity based method

The general idea of these methods is to train a network in performing a given task and then to

s

o

compute how important is the existence of a connection or node. Then, the least important connection

r nodes are removed and the remaining network is retrained. In general, the sensitivity measurement

t

does not interfere with training and requires an extra amount of computational effort. The key issue in

he implementation of these techniques is finding a way to measure how sensitive is the solution to the

e

c

removal of a connection or a node. Early approaches attempt to remove a connection by evaluating th

hange in the network’s output error. If the error increases too much, then the weight must be restored

d

t

back again. More sophisticated approaches evaluate the change in error for all the connections an

raining data and then remove the one connection which produces the least error increment. Obviously,

s

both of the above approaches are extremely time consuming, especially when large networks are con-

idered. A more heuristic approach is the "skeletonization" procedure proposed by Mozer and Smolen-

w

sky. In their approach, the relevance of a connection is computed again by measuring the error increase

hen the connection is removed. However, the relevance of a connection is not computed according to

e

m

the approaches described above but using information about the shape of the error surface near th

inimum to which the network has currently settled down. This is performed using the partial deriva-

tive of the error with respect to the connection to be removed. Connections with relevance below a
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certain threshold are then removed. "Optimal brain damage" is another approach proposed by Le Cun

-

t

and his co-workers. In this approach, the saliency of connections is measured using the second deriva

ive of the error with respect to the connection. In particular, the saliency s of a connection w is

given by

ij ij

s = (
∂w

∂ E
��������� )

2
�

w
�����

2
ij

2

2ij
ij

ij s

w

where the second derivative measures the sensitivity of the error to small perturbations in w . In thi

ay, connections with small weight values having a significant influence on the solution are not

4

removed.

.2 Constructive methods
� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

These methods build the structure of a network by starting with a minimal network and by

n

n

adding new nodes during training. Small networks get easily trapped to local minima, so new hidde

odes are added in order to change the shape of the weight space and to escape the local minima. Con-

l

sidering the curve fitting problem again, the constructive approach implies that we start with a very

ow order polynomial and we add higher order terms every time that the current polynomial cannot

a

give a good fit. There are a lot of interesting algorithms falling in this category and various heuristics

re employed during the network growth process. In order to give an idea how these algorithms

s

operate, we have decided to focus on two of them: the Upstart algorithm which appears to be very

uccessful for binary mappings and the Cascade Correlation algorithm which appears to be very suc-

t

s

cessful for real valued mappings. Both of the algorithms build a tree-like network by dividing the inpu

pace successively.

The Upstart algorithm builds a tree-like network in a top-down fashion. The nodes of the net-

t

n

work are linear threshold units (the output of a node is either 0 or 1). The number of input-outpu

odes is determined by the nature of the problem. In the following description we assume that the net-

c

work consists of a single output node, that is, the network can assign an input pattern into two possible

lasses (one is represented by 0 and the other by 1). The steps of this algorithm can be summarized as

follows:
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Step 1. Initially, a single node is assumed which is connected to each input of the network. This

S

node is trained to learn as many associations as possible.

tep 2. If, that node creates wrong classifications, two "child" nodes are created to correct the

S

erroneous "0" and "1" classifications of their ’parents’.

tep 3. The weights from the inputs to the parent node are frozen and the child nodes are con-

c

nected to the inputs of the network. Each child node is trained to correct the erroneous "0"

lassifications and the erroneous "1" classifications.

e

p

Step 4. The child node which corrects erroneous "0" is connected to its parent node with a larg

ositive weight, while the child node which corrects the wrongly 1’s cases is connected to its

S

parent node with a large negative weight.

tep 5. Two nodes are added for each child node in order to correct their wrong classifications.

.

T

The old child nodes are treated as parent nodes now and the added nodes as new child nodes

raining continues until all the data are classified correctly.

y

a

The Upstart algorithm is guaranteed to converge because each subnode is guaranteed to classif

t least one of its targets correctly. This is true because for binary patterns, it is always possible to cut

o

of a corner of the binary hypercube with a plane. The number of nodes grows linearly with the number

f patterns and the resulting hierarchical architecture can be converted into an equivalent two layer net-

o

work. It should be mentioned that the algorithm can easily be extended to a classifier with more than

ne classes.

The Cascade Correlation algorithm builds also a tree-like network but in a bottom-up fashion.

.

T

The number of input-output nodes is determined a-priori based on the characteristics of the problem

he hidden units are added to the network one at a time and are connected in a cascaded way. The

f

activation functions for the nodes may be sigmoidal functions or any mixture of non-linear activation

unctions. The main steps of the algorithm are the following:

-

i

Step 1. Connect each input node to each output node and train the network over the entire train

ng set in order to learn as many associations as possible.

-

t

Step 2. When no significant error reduction has occurred after a certain number of training itera

ions, run the network one last time over the entire training set to measure the error.
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tep 3. If the error is less than a threshold then stop, otherwise add a new hidden node (candi-

t

t

date), and connect it with every input node and every preexisting hidden node. Don’t connect i

o the output nodes yet.

Step 4. Freeze all the weights of the network and adjust only the new hidden unit’s input

t

a

weights by trying to maximize the magnitude of the correlation between the new unit’s outpu

nd the network’s output error.

Step 5. If the new hidden unit stops improving (i.e., the error doesn’t decrease), freeze its input

S

weights and connect it to the output nodes.

tep 6. Train the network adjusting only the connections from the new hidden unit to the output

S

nodes. Then, go to step 3.

tep 4 of the algorithm actually maximizes the magnitude of the correlation between the candi-

date node’s output and the network’s error. Specifically, the function to be maximized has the form

S =
�
(V − V� � )(E − E� � )

�

o ,p
p p ,o oΣ

w phere V is the candidate node output when the p -th training pattern is presented to the network and

-E is the output error of the o output node when the p -th training pattern is presented to the netp ,o

o p o ,p w

n

work. Furthermore, V� � and E� � are the averages of V and E over all the training patterns. Each ne

ode added to the network learns actually a mapping which has the best possible correlation with the

-

i

errors of the previous network. The way that the hidden to output weights are modified is the follow

ng: if a hidden unit correlates positively with the error at a given output node, it will develop a nega-

a

tive connection weight to that node, attempting to cancel some of the error. Otherwise, it will develop

positive connection weight. The main advantages of the Cascade Correlation algorithm are: (i) it

s

learns fast, (ii) it builds reasonably small networks, and (iii) it requires no back-propagation of error

ignals.

4.3 Just a few more words ...� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

So far we have only discussed certain pruning and constructive approaches without comparing

g

h

them with each other. It is really difficult to say which of the two approaches performs better. Prunin

as the disadvantage that since we don’t really have any knowledge about the size of the proper
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etwork, larger than the required size networks are often chosen as starting points. Since a lot of the

,

s

training time is spent before pruning really starts, this may be computationally wasteful. In addition

ince there are a lot of medium-size networks that can learn the same problem, the pruning procedure

e

n

may not be able to find a small-size network because it may get stuck with one of these medium-siz

etworks. Constructive approaches on the other hand have the disadvantage that they usually result

,

n

with networks having long propagation delays from network inputs to network outputs. In addition

ew nodes are usually assigned random weights which are likely to disrupt the approximate solution

h

p

already found. A probably superior approach would be a combination of constructive approaches wit

runing. For example, it has been suggested by the authors of the Cascade Correlation algorithm that

t

a possible way to keep the depth of the network small and to minimize the number of connections to

he hidden and output nodes, is to use a weight decay approach by adding a penalty term to the error

-

i

function. A general procedure for coupling constructive and pruning approaches would be the follow

ng: allow a small network to grow enough during training until a reasonable solution is found and

d

s

then prune the network in order to achieve a smaller and faster network which provides the desire

olution more efficiently and accurately.

Our discussion would have been incomplete if we did not mention two recently emerged

approaches which deal with the problem of network size: weight sharing and Genetic algorithms.

Weight sharing tries to reduce the number of weights in a network by first assigning a local

t

d

receptive field to each hidden node. Then, the weights of hidden nodes, having receptive fields a

ifferent locations of their inputs, are given the same values. Thus, hidden nodes that have receptive

f

t

fields with common weights try actually to detect the same kind of features but at different locations o

heir input. Weight sharing has been applied by Le Cun and his co-workers on a handwritten digit

recognition task, illustrating very good performance.

Genetic algorithms are a class of optimization procedures inspired by the biological mechanisms

f

w

of reproduction. A genetic algorithm operates iteratively on a population of structures, each one o

hich represents a candidate solution to the problem that the algorithm tries to solve. On each itera-

-

t

tion, a new population is produced by first applying on the old population three fundamental opera

ions: reproduction, crossover, and mutation. Then, each member of the population is evaluated through

a

g

a fitness function and members assigned a bad evaluation are discarded, while members assigned

ood evaluation survive in future populations. The key issue in the determination of a neural network

r

r

architecture using a genetic algorithm is how an architecture should be translated into a prope

epresentation to be utilized by the genetic algorithm, and how much information about an architecture
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hould be encoded into this representation. For example, Miller, Todd, and Hyde represent the net-

t

s

work architecture as a connection matrix, mapped directly into a bit-string. Then, a number of differen

ize networks are encoded in this way in order to form the initial population. The genetic operators act

o

on this population and new populations are formed. A decoding procedure is applied on each member

f the population in order to transform a bit-string into a legitimate network architecture. The fitness

s

e

of each network is evaluated by training it for a certain number of epochs and recording the network’

rror. There is some preliminary success of Genetic algorithms associated with the problem of optimiz-

R

ing the network size but there is still a lot to be accomplished.
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